大家好!前段时间我写了一篇关于“如何用 Go 语言建立一个简易的 DNS 解析器”的帖子。
那篇帖子里我没写有关“如何生成以及解析 DNS 查询请求”的内容,因为我觉得这很无聊,不过一些伙计指出他们不知道如何解析和生成 DNS 查询请求,并且对此很感兴趣。
我开始好奇了——解析 DNS 能 花多大功夫?事实证明,编写一段 120 行精巧的 Ruby 语言代码组成的程序就可以做到,这并不是很困难。
所以,在这里有一个如何生成 DNS 查询请求,以及如何解析 DNS 响应报文的速成教学!我们会用 Ruby 语言完成这项任务,主要是因为不久以后我将在一场 Ruby 语言大会上发表观点,而这篇博客帖的部分内容是为了那场演讲做准备的。?
(我尽量让不懂 Ruby 的人也能读懂,我只使用了非常基础的 Ruby 语言代码。)
最后,我们就能制作一个非常简易的 Ruby 版本的 dig
工具,能够查找域名,就像这样:
“`
$ ruby dig.rb example.com
example.com 20314 A 93.184.216.34
“`
整个程序大概 120 行左右,所以 并不 算多。(如果你想略过讲解,单纯想去读代码的话,最终程序在这里:dig.rb。)
我们不会去实现之前帖中所说的“一个 DNS 解析器是如何运作的?”,因为我们已经做过了。
那么我们开始吧!
如果你想从头开始弄明白 DNS 查询是如何格式化的,我将尝试解释如何自己弄明白其中的一些东西。大多数情况下的答案是“用 Wireshark 去解包”和“阅读 RFC 1035,即 DNS 的规范”。
生成 DNS 查询请求
现在我尝试去解析一个 DNS 查询,我们到了硬核的部分:解析。同样的,我们会将其分成不同部分:
- 解析一个 DNS 的请求头
- 解析一个 DNS 的名称
- 解析一个 DNS 的记录
这几个部分中最难的(可能跟你想的不一样)就是:“解析一个 DNS 的名称”。
步骤八:解析 DNS 的请求头
让我们先从最简单的部分开始:DNS 的请求头。我们之前已经讲过关于它那六个数字是如何串联在一起的了。
那么我们现在要做的就是:
- 读其首部 12 个字节
- 将其转换成一个由 6 个数字组成的数组
- 为方便起见,将这些数字放入一个类中
以下是具体进行工作的 Ruby 代码:
“`
class DNSHeader
attrreader :id, :flags, :numquestions, :numanswers, :numauth, :numadditional
def initialize(buf)
hdr = buf.read(12)
@id, @flags, @numquestions, @numanswers, @numauth, @num_additional = hdr.unpack(‘nnnnnn’)
end
end
“`
注: attr_reader
是 Ruby 的一种说法,意思是“使这些实例变量可以作为方法使用”。所以我们可以调用 header.flags
来查看@flags
变量。
我们也可以借助 DNSheader(buf)
调用这个,也不差。
让我们往最难的那一步挪挪:解析一个域名。
步骤九:解析一个域名
首先,让我们写其中的一部分:
“`
def readdomainname_wrong(buf)
domain = []
loop do
len = buf.read(1).unpack(‘C’)[0]
break if len == 0
domain << buf.read(len)
end
domain.join(‘.’)
end
“`
这里会反复读取一个字节的数据,然后将该长度读入字符串,直到读取的长度为 0。
这里运行正常的话,我们在我们的 DNS 响应头第一次看见了域名(example.com
)。
关于域名方面的麻烦:压缩!
–
但当 example.com
第二次出现的时候,我们遇到了麻烦 —— 在 Wireshark 中,它报告上显示输出的域的值为含糊不清的 2 个字节的 c00c
。
这种情况就是所谓的 DNS 域名压缩,如果我们想解析任何 DNS 响应我们就要先把这个实现完。
幸运的是,这没那么难。这里 c00c
的含义就是:
- 前两个比特(
0b11.....
)意思是“前面有 DNS 域名压缩!” - 而余下的 14 比特是一个整数。这种情况下这个整数是
12
(0x0c
),意思是“返回至数据包中的第 12 个字节处,使用在那里找的域名”
如果你想阅读更多有关 DNS 域名压缩之类的内容。我找到了相关更容易让你理解这方面内容的文章: 关于 DNS RFC 的释义。
步骤十:实现 DNS 域名压缩
因此,我们需要一个更复杂的 read_domain_name
函数。
如下所示:
“`
domain = []
loop do
len = buf.read(1).unpack(‘C’)[0]
break if len == 0
if len & 0b11000000 == 0b11000000
# weird case: DNS compression!
secondbyte = buf.read(1).unpack(‘C’)[0]
offset = ((len & 0x3f) << 8) + secondbyte
oldpos = buf.pos
buf.pos = offset
domain << readdomainname(buf)
buf.pos = oldpos
break
else
# normal case
domain << buf.read(len)
end
end
domain.join(‘.’)
“`
这里具体是:
- 如果前两个位为
0b11
,那么我们就需要做 DNS 域名压缩。那么:- 读取第二个字节并用一点儿运算将其转化为偏移量。
- 在缓冲区保存当前位置。
- 在我们计算偏移量的位置上读取域名
- 在缓冲区存储我们的位置。
可能看起来很乱,但是这是解析 DNS 响应的部分中最难的一处了,我们快搞定了!
一个关于 DNS 压缩的漏洞
有些人可能会说,有恶意行为者可以借助这个代码,通过一个带 DNS 压缩条目的 DNS 响应指向这个响应本身,这样 read_domain_name
就会陷入无限循环。我才不会改进它(这个代码已经够复杂了好吗!)但一个真正的 DNS 解析器确实会更巧妙地处理它。比如,这里有个 能够避免在 miekg/dns 中陷入无限循环的代码。
如果这是一个真正的 DNS 解析器,可能还有其他一些边缘情况会造成问题。
步骤十一:解析一个 DNS 查询
你可能在想:“为什么我们需要解析一个 DNS 查询?这是一个响应啊!”
但每一个 DNS 响应包含它自己的原始查询,所以我们有必要去解析它。
这是解析 DNS 查询的代码:
“`
class DNSQuery
attrreader :domain, :type, :cls
def initialize(buf)
@domain = readdomain_name(buf)
@type, @cls = buf.read(4).unpack(‘nn’)
end
end
“`
内容不是太多:类型和类各占 2 个字节。
步骤十二:解析一个 DNS 记录
最让人兴奋的部分 —— DNS 记录是我们的查询数据存放的地方!即这个 “rdata 区域”(“记录数据字段”)就是我们会在 DNS 查询对应的响应中获得的 IP 地址所驻留的地方。
代码如下:
“`
class DNSRecord
attrreader :name, :type, :class, :ttl, :rdlength, :rdata
def initialize(buf)
@name = readdomain_name(buf)
@type, @class, @ttl, @rdlength = buf.read(10).unpack(‘nnNn’)
@rdata = buf.read(@rdlength)
end
“`
我们还需要让这个 rdata
区域更加可读。记录数据字段的实际用途取决于记录类型 —— 比如一个“A” 记录就是一个四个字节的 IP 地址,而一个 “CNAME” 记录则是一个域名。
所以下面的代码可以让请求数据更可读:
“`
def readrdata(buf, length)
@typename = TYPES[@type] || @type
if @typename == “CNAME” or @typename == “NS”
readdomainname(buf)
elsif @type_name == “A”
buf.read(length).unpack(‘C*’).join(‘.’)
else
buf.read(length)
end
end
“`
这个函数使用了 TYPES
这个哈希表将一个记录类型映射为一个更可读的名称:
“`
TYPES = {
1 => “A”,
2 => “NS”,
5 => “CNAME”,
# there are a lot more but we don’t need them for this example
}
“`
read.rdata
中最有趣的一部分可能就是这一行 buf.read(length).unpack('C*').join('.')
—— 像是在说:“嘿!一个 IP 地址有 4 个字节,就将它转换成一组四个数字组成的数组,然后数字互相之间用 ‘.’ 联个谊吧。”
步骤十三:解析 DNS 响应的收尾工作
现在我们正式准备好解析 DNS 响应了!
工作代码如下所示:
“`
class DNSResponse
attrreader :header, :queries, :answers, :authorities, :additionals
def initialize(bytes)
buf = StringIO.new(bytes)
@header = DNSHeader.new(buf)
@queries = (1..@header.numquestions).map { DNSQuery.new(buf) }
@answers = (1..@header.numanswers).map { DNSRecord.new(buf) }
@authorities = (1..@header.numauth).map { DNSRecord.new(buf) }
@additionals = (1..@header.num_additional).map { DNSRecord.new(buf) }
end
end
“`
这里大部分内容就是在调用之前我们写过的其他函数来协助解析 DNS 响应。
如果 @header.num_answers
的值为 2,代码会使用了 (1..@header.num_answers).map
这个巧妙的结构创建一个包含两个 DNS 记录的数组。(这可能有点像 Ruby 魔法,但我就是觉得有趣,但愿不会影响可读性。)
我们可以把这段代码整合进我们的主函数中,就像这样:
“`
sock.send(makednsquery(“example.com”, 1), 0) # 1 is “A”, for IP address
reply, _ = sock.recvfrom(1024)
response = DNSResponse.new(reply) # parse the response!!!
puts response.answers[0]
“`
尽管输出结果看起来有点辣眼睛(类似于 #<DNSRecord:0x00000001368e3118>
),所以我们需要编写一些好看的输出代码,提升它的可读性。
步骤十四:对于我们输出的 DNS 记录进行美化
我们需要向 DNS 记录增加一个 .to_s
字段,从而让它有一个更良好的字符串展示方式。而者只是做为一行方法的代码在 DNSRecord
中存在。
“`
def tos
“#{@name}\t\t#{@ttl}\t#{@typename}\t#{@parsed_rdata}”
end
“`
你可能也注意到了我忽略了 DNS 记录中的 class
区域。那是因为它总是相同的(IN 表示 “internet”),所以我觉得它是个多余的。虽然很多 DNS 工具(像真正的 dig
)会输出 class
。
大功告成!
via: https://jvns.ca/blog/2022/11/06/making-a-dns-query-in-ruby-from-scratch/
作者:Julia Evans 选题:lujun9972 译者:Drwhooooo 校对:wxy
主题测试文章,只做测试使用。发布者:eason,转转请注明出处:https://aicodev.cn/2023/10/24/%e4%bb%8e%e9%9b%b6%e5%bc%80%e5%a7%8b%ef%bc%8c%e8%bf%90%e7%94%a8-ruby-%e8%af%ad%e8%a8%80%e5%88%9b%e5%bb%ba%e4%b8%80%e4%b8%aa-dns-%e6%9f%a5%e8%af%a2/